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Abstract
The project was part of a larger encompassing project in computer vision. The purpose was to

conduct a study to evaluate the accuracy of SqueezeNet, a neural network architecture, for drawing and
labeling bounding boxes on photos of cluttered surfaces. The end goal was to determine if SqueezeNet
would perform on par with or better than other tested architectures (AlexNet, VGG, ResNet). After
pursuing multiple  routes,  SqueezeNet  was not  able  to  be implemented and therefore  could not  be
evaluated  against  the  other  networks.  Future  plans  include  finding  other  routes  to  implement
SqueezeNet and eventually evaluating it.

1. Introduction
For a robot to be able to look at a table and pick up an object, several stages of analysis need to

happen.  We first focus on the difficulty of identifying said object. One cannot tell a robot “this is a
Tide  bottle”  and  expect  it  to  understand:  it  must  learn  what  a  Tide  bottle  is  through  training  a
mathematical  model  through  machine  learning.  The  lab’s  previous  work  involves  training  neural
networks based on the Faster R-CNN architecture (e.g AlexNet, VGG16, ResNet50, etc) to be able to
draw bounding boxes around desired objects in photographs of a cluttered table, as shown in Fig 1.

They all performed admirably, but more networks can always be evaluated. This project focused on
implementing SqueezeNet, a neural network architecture that is smaller and less complex than other
network architectures (and therefore more suitable for mobile applications).  My goal was to evaluate
its performance against the other networks.

SqueezeNet is notable for its small  size:  at 10MB of storage needed for a model, it  is 50x
smaller than AlexNet [1]. Despite its much smaller size, SqueezeNet is known to perform on par with
AlexNet, hence the comparison. If SqueezeNet could be implemented with the lab’s setup, it would
potentially allow running the network onboard the robot instead of an offboard computer which could
not be done with other networks due to size constraints. 
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Fig 1: The neural network takes an image as input and gives as output bounding boxes for detected objects; details include
coordinates for two opposing corners, the detected object, and certainness of the guess. Picture from [æ].



2. Related Work 
Object Detection in Photographs of Cluttered Surfaces

As previously mentioned, this project was part of an overarching project of the lab to evaluate
neural networks on object detection for the lab’s needs. As presented in [æ], the networks AlexNet;
VGG11, -13, -16, and -19; ResNet18, -34, -50, -101, and -152; and MobileNet were evaluated for
accuracy on the lab’s dataset of photographs of a table cluttered with up to fifteen unique objects. This
study extends the work from this paper by evaluating another network (SqueezeNet).

3. Approaches
The lab’s previous work was done in the Python neural network library PyTorch, so this is

where the attempt to implement SqueezeNet started. The lab used models of the networks that were
pre-trained  on  ImageNet,  a  dataset  for  object  detection  with  500,000  labeled  images.  The  lab’s
computer  did not  have a pre-trained model  for SqueezeNet,  nor could one be found in PyTorch’s
collection of pre-trained models. Pre-trained models were, however, discovered for the Caffe library,
and the decision to move over to Caffe was made.

The  process  for  installing  Caffe  went  awry:  multiple  dependencies  were  failing  to  install
properly and the computer’s setup was changed in a way that broke the PyTorch scripts. Caffe changes
were rolled back and the project turned back to using PyTorch.

It was at this time the lab discovered PyTorch does have pre-trained models; they were not
being accessed properly before. Once that was addressed, and the lab’s scripts edited so that they would
run with SqueezeNet,  SqueezeNet  was run.  Multiple sessions of training SqueezeNet  resulted in a
maximum accuracy of 1%: worse than randomly guessing. It was reasoned that the pre-trained model
may be not as desired for the lab’s work, and so another model had to be made.

The lab decided to train a fresh model of SqueezeNet on the ImageNet dataset. A script was
found to train the model, however it was made for a newer version of PyTorch than the lab uses. The
script was adjusted to work on the lab’s version, and it was run for 87 epochs. After the training, the
script validates the model; it  was shown that the model had acceptable accuracy while training but
close to 0% accuracy while validating. It was discovered the model guessed object #0 always as its first
guess, which works for training since the training set has a high presence of scattered 0s as the correct
answer. Dissimilarly, the validation answer set goes ascendingly in order with no 0s. Together, this
meant the training function thought the model was learning well, but the validating function revealed
the model to be ineffective. After 87 epochs the best accuracy for a model on validation was 1.24%,
which is approximately where it started after epoch 1. Even with poor results, this model must be
evaluated on the lab’s data.

Attempts to run the model pre-trained by the lab on ImageNet failed due to the lab’s scripts
requiring models inheriting from FasterRCNN while models from the pre-training script did not do so,
meaning they were incompatible.

4. Results, Conclusions, Future Work
The best accuracy measured on the lab’s data on a given pre-trained model was ~1%. The in-lab

pre-trained models could not be evaluated.
To conclude, this project did not succeed in implementing SqueezeNet, on the grounds that the

closest  its  work  came  to  implementation  came  in  well  below  an  acceptable  threshold  of  “poor
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accuracy”.  Since  this  project  did  not  succeed  in  implementing  SqueezeNet,  it  could  not  evaluate
SqueezeNet.

This is not to say nothing was gained for the primary researcher from undertaking this project.
The researcher gained a strong appreciation and fluency in Python. They now have an understanding of
neural networks and machine learning as a whole. The researcher discovered a love for the location of
their  work,  Providence  RI,  and intends  to  return,  perhaps  for  their  doctorate.  The project  did not
accomplish all of its initial goals, but that is not to say it was a wasted effort.

Future  work  includes  successfully  implementing  SqueezeNet  and  evaluating  it  against
previously-used networks. It also includes finding other architectures and evaluating those as well.
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